
Timing Issues in Multi-level Logic Optimization

Giovanni De Micheli Integrated Systems Laboratory

Module 1

- Objectives:
 - **▲** Timing verification:
 - **▲ Delay modeling**
 - **▲** Critical paths
 - **▲** The false path problem

Timing verification and optimization

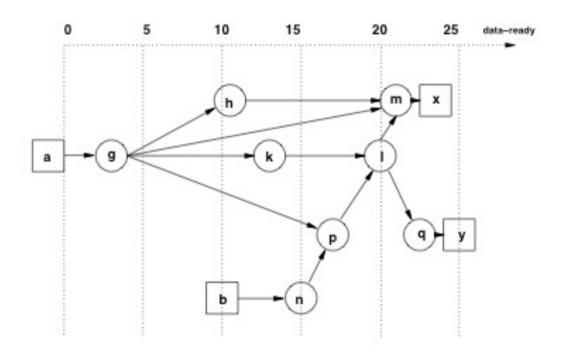
Verification:

- ▲ Check that a circuit runs at speed
 - **▼** Satisfies I/O delay constraints
 - **▼** Satisfies cycle-time constraints

Optimization:

- ▲ Minimum *delay*
 - **▼** (subject to *area* constraints)
- ▲ Minimum area
 - **▼** Subject to *delay* constraints

Delay modeling


◆ Gate delay modeling:

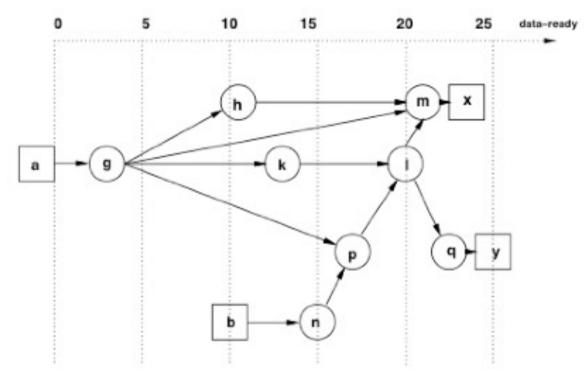
- ▲ Straightforward for bound networks
 - **▼** Cell library models: d = a + b Cap
 - **▼** Cap due to fanout and wiring
- **▲** Approximations for unbound networks
 - **▼** Virtual gates
- Network delay modeling:
 - **▲** Compute signal propagation
 - **▼** Topological methods
 - **▼** Logic/topological methods (false paths)

Network delay modeling

- ◆ For each vertex v_i
- ◆ Propagation delay d_i:
 - ▲ I/O propagation delays are usually zero
- **◆** Data-ready time t_i:
 - ▲ Input data-ready time denote when inputs are available
 - ▲ Computed elsewhere by forward traversal

$$\Delta t_i = d_i + \max_j t_j \quad s.t. (v_j, v_i) \in E$$

Propagation delays:


$$\Delta d_g = 3$$
; $d_h = 8$; $d_m = 1$; $d_k = 10$; $d_l = 3$

$$\Delta d_n = 5$$
; $d_p = 2$; $d_p = 2$; $d_x = 2$; $d_y = 3$

Network delay modeling

- **◆**For each vertex *v_i*:
- ◆Required data-ready time <u>t</u>i
 - ▲ Specified at the primary outputs
 - ▲ Computed elsewhere by backward traversal
 - $\triangle \underline{t}_i = \min_j \underline{t}_j d_j \quad \text{s.t. } (v_i, v_j) \in E$
- ◆Slack s_i:
 - ▲ Difference between required and actual data-ready times

$$s_i = \underline{t}_j - t_i$$

 $d_n=5$; $d_l=3$; $d_k=10$; $d_h=8$; $d_g=3$;

 $d_x=2; d_y=3; d_q=2; d_m=1; d_p=2;$

- ◆ Required data-ready times:
 - $\underline{\mathbf{t}}_{x}$ = 25 and $\underline{\mathbf{t}}_{y}$ = 25

•
$$s_x = 2$$
; $s_y = 0$

$$\bullet$$
 $\underline{t}_m = 25 - 2 = 23$; $s_m = 23 - 21 = 2$

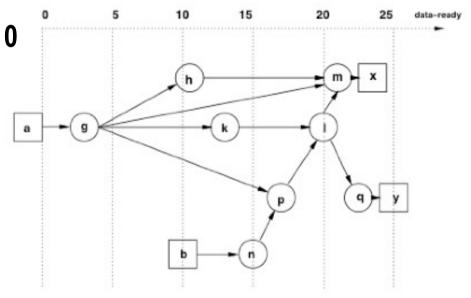
$$\bullet$$
 $\underline{t}_q = 25 - 3 = 22$; $s_q = 22 - 22 = 0$

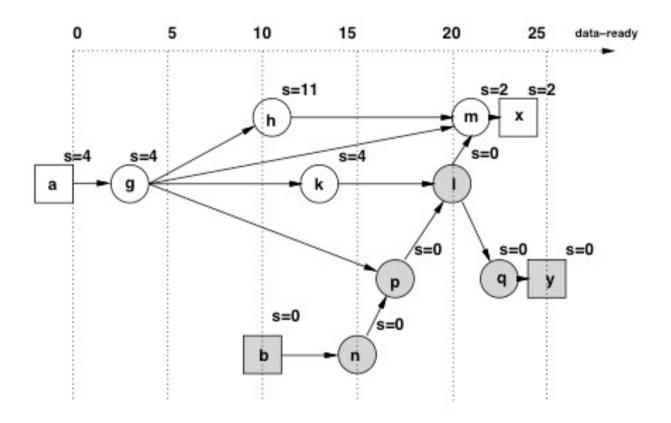
$$\bullet$$
 $\underline{t}_1 = \min \{23 - 1; 22 - 2\} = 20; s_1 = 20 - 20 = 0$

$$\bullet$$
 $\underline{\mathbf{t}}_{h}$ = 23 - 1 = 22; s_{h} = 22 - 11 = 11

$$\bullet$$
 $\underline{t}_k = 20 - 3 = 17$; $s_k = 17 - 13 = 4$

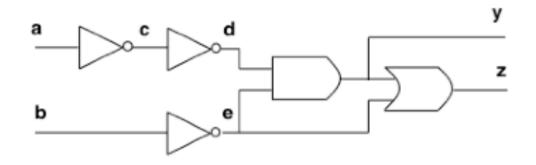
$$\bullet$$
 $\underline{t}_p = 20 - 3 = 17$; $s_p = 17 - 17 = 0$


$$\bullet$$
 $\underline{t}_n = 17 - 2 = 15$; $s_n = 15 - 15 = 0$


$$\bullet$$
 \underline{t}_b = 15 - 5 = 10; s_b = 10 - 10 = 0

$$\bullet$$
 \underline{t}_g = min {22 - 11;17 - 10; 17 - 2} = 7; s_g = 7 - 3 = 4

$$\bullet$$
 $\underline{t}_a = 7 - 3 = 4$; $s_a = 4 - 0 = 4$


 $d_x=2$; $d_y=3$; $d_q=2$; $d_m=1$; $d_p=2$; $d_n=5$; $d_l=3$; $d_k=10$; $d_h=8$; $d_g=3$;

Topological critical path

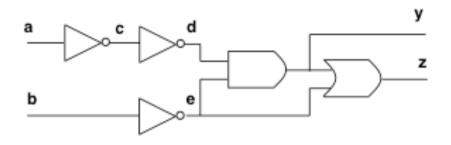
- Assume topologic computation of :
 - ▲ Data-ready by forward traversal
 - ▲ Required data-ready by backward traversal
- ◆Topological critical path:
 - ▲ Input/output path with zero slacks
 - ▲ Any increase in the vertex propagation delay affects the output data-ready time
- ◆A topological critical path may be *false*:
 - ▲ No event can propagate along that path
 - ▲ Because of interaction of logic and topology

- All gates have unit delay
- ◆ All inputs ready at time 0
- ◆ Longest topological path : (*v_a*, *v_c*, *v_d*, *v_y*, *v_z*) :
 - ▲ Path delay: 4 units
- Critical true path: (v_a, v_c, v_d, v_y) :
 - ▲ Path delay: 3 units

Sensitizable paths

- ◆ A path in a logic network is sensitizable if an event can propagate from its tail to its head
- ◆ A critical path is a sensitizable path of maximum weight
- Only sensitizable paths should be considered
- ◆ Non-sensitizable paths are false and can be discarded

Sensitizable paths


- Path:
 - **▲** Ordered set of vertices
- ◆ Inputs to a vertex:
 - **▲** Direct predecessors
- **◆** Side-inputs of a vertex:
 - ▲Inputs not on the path

Sensitization condition

- ◆Path: $P = (v_{xo}, v_{x1}, ..., v_{xm})$
- ◆An event propagates along *P if :*

$$\partial f_{xi} / \partial x_{i-1} = 1$$
, $i = 1, 2, ..., m$

- **◆Remarks**:
 - ▲ Boolean differences are function of the side-inputs and values on the side-inputs may change
 - ▲ Boolean differences must be true at the time that the event propagates

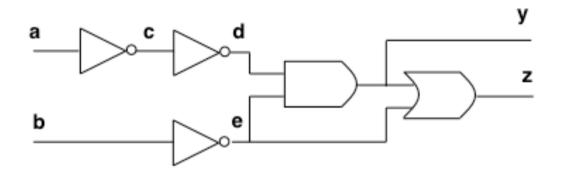
- ightharpoonup Path: $(v_a, v_c, v_d, v_y, v_z)$
 - $\triangle \partial f_v / \partial d = e = 1$ at time 2
 - $\triangle \partial f_z / \partial y = e' = 1$ at time 3
- ◆ Not dynamically sensitizable because e settles at time 1

Modes for delay computation

- **◆** Transition *mode:*
 - ▲ Variables assumed to hold previous values
 - **▼** Model circuit node capacitances
 - ▲ Two test vectors are needed
- ◆ Floating mode:
 - ▲ Circuit is assumed to be memoryless
 - **▼** Variables have unknown value until set by input test vector
 - ▲ Need only one test vector

Static co-sensitization

◆ Assumption:


- ▲ Circuit modeled by AND, OR, INV gates
- ▲ *INV* are irrelevant to the analysis
- ▲ Floating mode
- Controlling values:
 - ▲ 0 for *AND* gate
 - ▲1 for *OR* gate
- Gate is controlled when controlling value is present

Static co-sensitization

- ◆Path: $P = (v_{xo}, v_{x1},, v_{xm})$
- ◆A vector statically co-sensitizes a path to 1 (or to 0) if :
 - $\triangle x_m = 1 \text{ (or 0)}$ and
 - $\triangle v_{xi-1}$ has a controlling value whenever v_{xi} has a controlled value
- ◆Necessary condition for a path to be true
- ◆Sufficient conditions are based on the timing of the signal

False path detection test

- ◆ For all input vectors, one of the following is true:
 - ▲(1) A gate is controlled and
 - **▼** the path provides a non-controlling value
 - **▼** a side-input provides a controlling value
 - ▲ (2) A gate is controlled and
 - **▼** The path and a side-input have controlling values
 - **▼** The side-input presents the controlling value first
 - ▲ (3) A gate is not controlled and
 - **▼** A side-input presents the non-controlling value last

- ♦ Path: $(v_a, v_c, v_d, v_y, v_z)$
- **♦**For a = 0, b = 0:
 - ▲ Condition (1) occurs at the OR gate
- ♦ For a = 0, b = 1:
 - ▲ Condition (2) occurs at the AND gate
- ♦ For a = 1, b = 0:
 - ▲ Condition (2) occurs at the OR gate
- ♦ For a = 1, b = 1:
 - ▲ Condition (1) occurs at the AND gate
 - (c) Giovanni De Micheli

Important problems

- Check if circuit works at speed <u>t</u>:
 - ▲ Verify that all true paths are faster than <u>t</u>
 - ▲ Show that all paths slower than t are false
- Compute groups of false paths
- **◆** Compute critical true path:
 - ▲ Binary search for values of t
 - ▲ Show that all paths slower that t are false

Summary

- Timing optimization is crucial for achieving competitive logic design
- **◆** Timing optimization problems are hard:
 - ▲ Detection of critical paths
 - **▼** Elimination of false paths
 - ▲ Network transformations